Example 4

Find y as a function of x, given that $\frac{d^2y}{dx^2} = 15x - 2$ and that when x = 2,

$$\frac{dy}{dx} = 25 \text{ and } y = 20.$$

Given
$$\frac{d^2y}{dx^2} = 15x - 2$$

Integrating both sides of this equation with respect to x,

$$\frac{dy}{dx} = \int (15x - 2)dx$$
$$= \frac{15x^2}{2} - 2x + c$$

 $\frac{dy}{dx} = 25$ when x = 2, But

$$\therefore 25 = \frac{15(4)}{2} - 2(2) + c \text{ i.e. } c = -1$$

$$\therefore \frac{dy}{dx} = \frac{15x^2}{2} - 2x - 1$$

Integrating both sides of this equation with respect to x,

$$y = \frac{5x^3}{2} - x^2 - x + d$$

But y = 20 when x = 2, giving d = 6.

The required equation is $y = \frac{5x^3}{2} - x^2 - x + 6$.

Exercise 12A

1. Find an expression for y if $\frac{dy}{dx}$ is given by (a) $3x^2$ (b) 2x (c) x^3 (d) $2x^4$ (e) 5 (f) $3x^5$ (g) \sqrt{x} (h) $\frac{6}{x^2}$ (i) $-\frac{4}{x^3}$ (j) $\frac{1}{\sqrt{x}}$ (k) $2x^3 + 3x^2$ (l) 5x + 1 (m) $2x + 9x^2$ (n) $5x^4 - 6x$ (o) $8x^3 - 12x^2$ (p) x(4 - 3x)(q) 3x(x - 2) (r) $2x(x^3 - 4)$ (s) (3x - 1)(x + 1)

a)
$$3x^2$$
 (t

(i)
$$\frac{1}{4}$$

(1)
$$5x + 1$$

(m)
$$2x + 9x$$

(n)
$$5x^4 - 6x$$

(n)
$$x(4 - 3x)$$

(a)
$$3x(x - 2)$$

(t)
$$(x-6)(x-2)$$

2. Integrate the following functions with respect to x.

(e)
$$7 - 2x$$

(f)
$$\frac{6}{73}$$

(g)
$$-\frac{12}{5}$$

(h)
$$\frac{3}{7}$$

(i)
$$\frac{5x^2}{\sqrt{x}}$$

(a)
$$8x^3$$
 (b) $12x$ (c) $5x^2$ (d) 7 (e) $7 - 2x$ (f) $\frac{6}{x^3}$ (g) $-\frac{12}{x^5}$ (h) $\frac{3x}{\sqrt{x}}$ (i) $\frac{5x^2}{\sqrt{x}}$ (j) $\frac{3x^4 + 6}{x^2}$

(k)
$$4x^3 + 3x^2 + 2x + 1$$

(I)
$$2x^2(3-4x)$$

(m)
$$x^4 + x^2 + \frac{1}{x^2} + \frac{1}{x^4}$$
.

(a)
$$\int 12x \, dx$$
 (b) $\int (x^3 + x) \, dx$ (c) $\int x(x+1) \, dx$ (d) $\int (x+6)(x-4) \, dx$ (e) $\int \frac{5}{x^4} \, dx$ (f) $\int \left(10x^4 + 8x^3 - \frac{6}{x^2}\right) \, dx$ (g) $\int \frac{x^4 + 1}{x^2} \, dx$ (h) $\int \frac{(1-3x)}{\sqrt{x}} \, dx$ (i) $\int \left(x + \frac{1}{x}\right) \left(x - \frac{1}{x}\right) \, dx$

- 4. The gradient of a curve at the point (x, y) on the curve is given by 6x. If the curve passes through the point (1, 4), find the equation of the curve.
- 5. Find the equation of the curve passing through the point (-2, 6) and having gradient function $(3x^2 2)$.
- 6. The gradient of a curve at the point (x, y) on the curve is given by 2(1 x) and the curve passes through the point (-1, 5). Find the equation of the curve.
- 7. Find S as a function of t given that $\frac{dS}{dt} = 6t^2 + 12t + 1$ and when t = -2, S = 5.
- 8. Find V as a function of h given that $\frac{dV}{dh} = 2(7h 2)$ and when h = 2, V = 21.
- 9. Find A as a function of p given that $\frac{dA}{dp} = 5 4p$ and when p = 3, A = -2
- 10. The gradient of a curve at the point (x, y) on the curve is given by $(3x^2 + 8)$. If the curve and the line 2x y 1 = 0 cut the y-axis at the same point, find the equation of the curve.
- 11. The gradient function of a curve is given by (2x 3) and the curve cuts the x-axis at two points: A(5, 0) and B. Find the equation of the curve and the coordinates of B.
- 12. The gradient of a curve at the point (x, y) on the curve is given by (2x 4). If the minimum value of y is 3, find the equation of the curve.
- 13. Find y as a function of x given that $\frac{d^2y}{dx^2} = 4 6x$ and that when x = 2, $\frac{dy}{dx} = -4$ and y = 7.
- 14. Find y as a function of x given that $\frac{d^2y}{dx^2} = 6x 4$, y = 4 when x = 1 and y = 2 when x = -1.
- 15. Find y as a function of x given that $\frac{d^2y}{dx^2} = 30x$, y = 32 when x = 2 and y = 5 when x = -1.