\qquad DATE \qquad
\qquad

Electric Forces and Fields

GOULOMB'S LAW

PROBLEM
Two electrostatic point charges of $+20.0 \mu \mathrm{C}$ and $-\mathbf{3 0 . 0} \mu \mathrm{C}$ exert attractive forces on each other of $\mathbf{- 1 4 5} \mathbf{N}$. What is the distance between the two charges?

SOLUTION
Given:

$$
\begin{aligned}
& q_{1}=2.00 \times 10^{-5} \mathrm{C} \\
& F_{\text {electric }}=-145 \mathrm{~N}
\end{aligned}
$$

$$
q 2=-3.00 \times 10^{-5} \mathrm{C}
$$

$$
k_{C}=8.99 \times 109 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}
$$

Unknown:

$$
r=?
$$

Choose the equation(s) or situation:
Use Coulomb's law, given on page 634.

$$
F_{\text {electric }}=\frac{k_{C} q_{1} q_{2}}{r^{2}}
$$

Rearrange the equation(s) to solve for the unknown(s): Rearrange Coulomb's law to solve for the distance between the two charges.
$r=\sqrt{\frac{k_{C} q_{1} q_{2}}{F_{\text {electric }}}}=\sqrt{\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(-3.0 \times 10^{-5} \mathrm{C}\right)\left(2.0 \times 10^{-5} \mathrm{C}\right)}{-145 \mathrm{~N}}}$ $r=0.193 \mathrm{~m}=19.3 \mathrm{~cm}$

ADDITIONAL PRAGTGE

1. Two electrostatic point charges of $-13.0 \mu \mathrm{C}$ and $-16.0 \mu \mathrm{C}$ exert repulsive forces on each other of 12.5 N . What is the distance between the two charges?
2. Two electrostatic point charges of $99.9 \mu \mathrm{C}$ and $33.3 \mu \mathrm{C}$ exert repulsive forces on each other of 87.3 N . What is the distance between the two charges?
3. Two electrostatic point charges of $-43.2 \mu \mathrm{C}$ and $22.4 \mu \mathrm{C}$ exert attractive forces on each other of -6.5 N . What is the distance between the two charges?
4. A glass rod rubbed against silk gains a charge of $-5.3 \mu \mathrm{C}$. What is the electric force between the rod and the silk when the two are separated by a distance of 4.2 cm ? (Assume that the charges are located at a point.)
5. A glass rod rubbed against your hair gains a charge of -14.0 nC . What is the electric force between the balloon and your hear when the two are separated by a distance of 7.1 cm ? (Assume that the charges are located at a point.)
\qquad DATE \qquad
\qquad
6. A dog's fur is combed and the comb gains a charge of 8.0 nC . What is the electric force between the fur and the comb when the two are separated by 2.0 cm ?
7. Suppose two pions are separated by $8.3 \times 10^{-10} \mathrm{~m}$. If the magnitude of the electric force between the charges is $3.34 \times 10^{-10} \mathrm{~N}$, what is the value of q ?
8. Suppose two muons having equal but opposite charge are separated by $6.4 \times 10^{-8} \mathrm{~m}$. If the magnitude of the electric force between the charges is $5.62 \times 10^{-14} \mathrm{~N}$, what is the value of q ?
9. Suppose two delta particles are separated by $9.3 \times 10^{-11} \mathrm{~m}$. If the magnitude of the electric force between the charges is $2.66 \times 10^{-8} \mathrm{~N}$, what is the value of q ?
10. Suppose two equal charges are separated by $6.5 \times 10^{-11} \mathrm{~m}$. If the magnitude of the electric force between the charges is $9.92 \times 10^{-4} \mathrm{~N}$, what is the value of q ?
