\qquad DATE \qquad CLASS \qquad

Electric Forces and Fields

Problem B

THE SUPERPOSITION PRINGIPLE

PROBLEM

Consider three point charges on the x-axis: $q_{1}=4.92 \times 10^{-9} \mathrm{C}$ is at the origin, $q_{2}=-6.99 \times 10^{-8} \mathrm{C}$ is at $x=-3.60 \times 10^{-1} \mathrm{~m}$, and $\boldsymbol{q}_{3}=5.65 \times 10^{-9} \mathrm{C}$ is at $x=1.44 \mathrm{~m}$. Find the magnitude and direction of the resultant force on \boldsymbol{q}_{1}.

SOLUTION

Given: $\quad q_{1}=4.92 \times 10^{-9} \mathrm{C} \quad r_{1,2}=-3.60 \times 10^{-1} \mathrm{~m}$
$q_{2}=-6.99 \times 10^{-8} \mathrm{C} \quad r_{1,3}=1.44 \mathrm{~m}$
$\mathrm{q}_{3}=5.65 \times 10^{-9} \mathrm{C} \quad k_{C}=8.99 \times 10^{9} \mathrm{~N} \bullet \mathrm{~m}^{2} / \mathrm{C}^{2}$
Unknown: $\quad F_{1, \text { tot }}=$?
Calculate the magnitude of the forces with Coulomb's law:
$F_{1,2}=\frac{k_{C} q_{1} q_{2}}{r_{1,2}{ }^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \bullet \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(4.92 \times 10^{-9} \mathrm{C}\right)\left(-6.99 \times 10^{-8} \mathrm{C}\right)}{\left(-3.60 \times 10^{-1} \mathrm{~m}\right)^{2}}=-2.39 \times 10^{-5} \mathrm{~N}$
$F_{1,3}=\frac{k_{C} q_{1} q_{3}}{r_{1,3}{ }^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(4.92 \times 10^{-9} \mathrm{C}\right)\left(5.65 \times 10^{-9} \mathrm{C}\right)}{(1.44 \mathrm{~m})^{2}}=1.21 \times 10^{-5} \mathrm{~N}$
The forces are all along the x-axis, so add up the x-components:
$F_{1, \text { tot }}=F_{1,2}+F_{1,3}=-2.39 \times 10^{-5} \mathrm{~N}+1.21 \times 10^{-5} \mathrm{~N}=-1.18 \times 10^{-5} \mathrm{~N}$

ADDITIONAL PRAGTGE

1. Suppose four protons were at the corners of a square. The length of each side of the square is $1.52 \times 10^{-9} \mathrm{~m}$. If q_{1} is on the upper right corner, calculate the magnitude and direction of the resultant force on q_{1}.
2. Consider three point charges, $q_{1}=4.50 \mathrm{C}, q_{2}=4.50 \mathrm{C}$, and $q_{3}=6.30 \mathrm{C}$, located at the corners of an isosceles triangle. The charges q_{1} and q_{2} are 5.00 m apart and form the base. The triangle is 3.50 m high, and q_{3} is located at the top. Calculate the magnitude and direction of the resultant force on q_{3}.
3. Imagine three point charges on the corners of a triangle: $q_{1}=-9.00 \mathrm{nC}$ is at the origin, $q_{2}=-8.00 \mathrm{nC}$ is at $x=2.00 \mathrm{~m}$, and $q_{3}=7.00 \mathrm{nC}$ is at $y=$ 3.00 m . Find the magnitude and direction of the resultant force on q_{1}.
4. Suppose three point charges are on the y-axis: $q_{1}=-2.34 \times 10^{-8} \mathrm{C}$ is at the origin, $q_{2}=4.65 \times 10^{-9} \mathrm{C}$ is at $y=0.500 \mathrm{~m}$, and $q_{3}=-2.99 \times 10^{-10} \mathrm{C}$ is at $y=1.00 \mathrm{~m}$. What is the magnitude and direction of the resultant force on q_{1} ?
5. Consider four electrons at the corners of a square. Each side of the square is $3.02 \times 10^{-5} \mathrm{~m}$. Find the magnitude and direction of the resultant force on q_{3} if it is at the origin.
\qquad DATE \qquad
6. Imagine three point charges at the corners of an isosceles triangle: $q_{1}=$ $2.22 \times 10^{-10} \mathrm{C}, q_{2}=3.33 \times 10^{-9} \mathrm{C}$, and $q_{3}=4.44 \times 10^{-8} \mathrm{C}$. The charges q_{1} and q_{2} are 1.00 m apart and form the triangle's base. The triangle is 0.250 m tall. If q_{3} is at the top, what is the magnitude and direction of the resultant force on q_{3} ?
7. Consider three 2.0 nC point charges at the following locations: at (0 m , $0 \mathrm{~m})$, at $(1.0 \mathrm{~m}, 2.0 \mathrm{~m})$, and at $(1.0 \mathrm{~m}, 0 \mathrm{~m})$. Find the magnitude and direction of the resultant force on the charge at the origin.
8. Consider three point charges on the corners of a triangle, where $q_{1}=$ -4.0 mC at the origin; $q_{2}=-8.0 \mathrm{mC}$ at $(2.0 \mathrm{~m}, 0 \mathrm{~m})$; and $q_{3}=2.0 \mathrm{mC}$ at $(0 \mathrm{~m}, 2.0 \mathrm{~m})$. Calculate the magnitude and direction of the resultant force on q_{1}.
9. Suppose three point charges are on the corners of a triangle: $q_{1}=$ 9.00 mC is at the origin, $q_{2}=6.00 \mathrm{mC}$ is at the point $(1.00 \mathrm{~m}, 1.00 \mathrm{~m})$, and $q_{3}=3.00 \mathrm{mC}$ is at $(-1.00 \mathrm{~m}, 1.00 \mathrm{~m})$. Find the magnitude and direction of the resultant force on q_{1}.
10. Consider three equal point charges of 4.00 nC on a line. All charges are 4.00 m apart. Calculate the magnitude and direction of the resultant force on the charge in the middle.
